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A technical description of a proposed inventory and procurement policy for
ordering and allocating maintenance and operating supplies throughout the Deep
Space Network is presented. This policy differs from the conventional economic
lot-size procurement policy in that the reorder point for the Network Supply Depot
(NSD) depends upon the stockage levels at all area station or Complex Supply
Facilities (CSF), as well as on the level at the NSD. Thus, by basing reorder
decisions upon the state of the inventory supplies throughout the entire DSN, an
efficient cost minimizing policy is possible. Safe minimum inventory levels are
established for each CSF by means of statistical decision theory techniques which
require NSD to reorder whenever one or more of the CSFs reaches its prescribed
minimum. Some results of a statistical study of the effect of this policy are included.

l. Introduction and Summary

The key feature of the following proposed inventory
and procurement policy for the Deep Space Network is
the continuous updating of data files in the Integrated
Logistics System’s (ILS) Supply Inventory Subsystem
(SIS). These data files contain the following for each in-
ventory item:

(1) The stockage level on hand at each CSF and at
NSD.

(2) The (estimated) demand distribution at each CSF.

(3) Cost parameters associated with the item.
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This updating is to be accomplished by utilizing the
existing Complex and Network teletype facilities which
access a central computer for updating data files via a
remote terminal. Another means to update data files is to
automate the transaction at each CSF at the time of
issuance. Such data could be stored in a cassette tape and
in a specified format for later access by the central com-
puter. The transaction information would be available for
file maintenance on an as-required or near-real-time basis.

Each time a demand for a particular item occurs at one
or more of the CSFs (and their computer files are updated
at NSD), the sufficiency of the current stockage level at a
CSF is compared to a “safe” minimum stockage level for
the particular CSF. This level is a function of the proba-
bility of being out of stock during one lead period and of
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the cost parameters. If the current stock level at even
one CSF falls below the minimum, a computer program
determines

(1) The numbers of units to be shipped from the NSD
to certain CSFs,.

(2) If NSD is out of stock, the number of units to be
ordered by the NSD from outside sources.

When a shipment is received at NSD, a program is run
which prints out

(3) The number of units to be shipped to each CSF.

(4) The number of units (if any) to be placed in NSD
inventory.

An alternative mode of operation which is slightly less
effective is to make the computer run yielding (3) and (4)
at the time the order is placed. The stock allocated to NSD
in (4) is called the reserve stock. Two types of policies are
considered below:

(1) No-reserve policy (NR-policy) under which all units
are allocated and shipped to CSFs as soon as they
are received at NSD.

(2) One-stage reserve policy (R-policy) under which a
number of units determined in (4) are placed in NSD
inventory, and all are shipped to CSFs as soon as
one of the CSFs reaches its minimum level.

These policies are discussed in Section II. The choice
between them depends on a tradeoff between the reduced
CSF inventory levels (and, hence, costs) brought about by
R-policies and the increased costs of handling and ship-
ping from NSD to CSFs. It is anticipated that the no-
reserve policy is preferable for many low-cost items.

Both policies are implemented through the use of an
optimal allocation table (see Section IT) which is based
upon estimated mean demand rates at the CSFs. These
estimates are simply the means of the demand distribu-
tions, which are continuously updated. Tables listing these
optimal allocations are easily constructed for a variety of
demand rates taking advantage of the fact that the allo-
cations depend only on the ratios of CSF mean demand
rates. For critical or costly items, the computational algo-
rithm used to construct the tables can be used directly
each time an allocation is necessary. Both the NR- and
R-policies have another important feature in common: a
minimum inventory level (greater than zero) is not main-
tained at NSD. Maintaining such a minimum incurs exces-
sive inventory costs because the minimum may be reached
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and NSD reorders may be placed at a time when the levels
of inventory on hand at the CSFs are large. An efficient
cost-minimizing policy must base reorder decisions upon
the state of the entire system, i.e., the levels of inventory
on hand at the CSFs as well as the NSD level. It should be
noted that the lead period used to determine safe CSF
minimum levels includes the time for NSD to receive the
order plus the shipping time to the CSFs,

The size of the NSD reserve stock (in the R-policy) tends
to be small compared to the total quantity allocated to the
CSFs, typically 10-15%. This occurs because the effective-
ness of the R-policy in reducing average inventory costs
depends upon all CSFs reaching (or approaching) their
minimum levels at approximately the same time. The most
effective size for the reserve stock tends to be in the range
where it serves as a small “correction” to the chance
fluctuations around the mean demand rates.

The method used to determine the size of an NSD order,
also discussed in Section II, is a modification of the con-
ventional economic lot size model (Refs. 1, 2) designed to

take into account the effects of ordering simultaneously
for all CSFs,

The question of when to order, i.e., determining the safe
minimum levels for the CSFs, is taken up in Section III.
The cost parameters determine what is called (in the fol-
lowing discussion) a cost-criticality quantile. An inventory
level is considered safe if it exceeds the cost criticality
quantile of the (current) demand distribution. (In Sec-
tion III, the current estimate of the demand distribution
is called the posterior distribution of Y, where Y is the
demand during one lead period). Thus, the heart of the
method of determining CSF minimum levels is the deriva-
tion of estimated demand distributions for the CSFs. These
estimates are based on:

(1) Prior information regarding demand patterns for an
item (e.g., “engineering judgment”).

(2) The continuously updated demand experience at
each CSF.

Source (1) may not be available for many items; in any
case, its influence diminishes steadily as demand experi-
ence is accumulated.

A natural way of obtaining an estimate of the demand
distribution is to assume that its mean is the observed
mean demand and then use the standard model of a
Poisson distribution with that mean. The inadequacy of
this approach results not from the Poisson model (a gen-
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eralized version of which is used in Section III), but rather
from the unequal consequences of overestimating and
underestimating the mean demand.

To illustrate, suppose the mean demand is actually 10
and the distribution of demand is given by the solid curve
in Fig. 1.

The left-hand dotted curve represents the estimated
demand distribution if (through chance fluctuation) one
observes a mean demand of 7. The right-hand dotted
curve comes from an observed mean demand of 13. For
typical values of cost parameters, the cost-criticality quan-
tile is around 0.90, so that shortages occur in only one-
tenth of the lead periods. Thus if the left-hand dotted
curve were assumed true, the minimum level s would be
set at about 10, say, so that the shaded area is only 10% of
the area under the curve. Recall, however, that the solid
curve is the true demand distribution, so that the true
probability of a shortage during any lead period would be
about one-half. If an error of compatible magnitude were
made in the opposite direction (ie., overestimating the
mean demand) one would have an estimated demand
curve like the one on the right-hand side of Fig. 1 and
would set s at about 16. As a consequence of this over-
estimation, an extra three units would be maintained in
inventory, resulting in an added inventory cost. This
added cost would have less impact than the very high
shortage probability resulting from underestimated mean
demand.

It is clear, therefore, that minimum levels should be
estimated conservatively, To what degree and according
to what formulas these levels should be estimated are
discussed in Section IIT through the use of statistical
decision theory. For the purpose of setting CSF minimum
levels, all of the information derived from observed de-
mand (and possibly prior information) can be summarized
in the estimated (or posterior) demand distribution, which
is easily updated each time a CSF demand is experienced.

Also included in Section III are some results of an exten-
sive investigation which was carried out to evaluate the
performance of the procedures developed for setting CSF
minimum levels (i.e., deciding when to reorder). An addi-
tional aim of this investigation was to develop guidelines
for choosing the three parameter values needed to specify
such a procedure. The art of choosing these parameter
values is one of the main topics of Section III. In applica-
tion to the DSN, large categories of items would be subject
to the same parameter choices.
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Il. Procurement and Allocation Policies
A. Inventory Concepts

The performance of any inventory policy is measured
by the average cost it incurs per unit time and the fre-
quency and severity of shortages. A convenient set of
parameters to use in expressing the average cost is the
following (all referring to a single inventory item):

M = mean demand per year for all CSFs combined
h = cost of stocking one unit for one year

K = fixed cost of preparing, handling, and shipping
an order (excluding “per unit” costs)

T = mean time between reorders (in years)

W, = average inventory at ith CSF when new ship-
ment (not reserve shipment) is received.

Note that the last two parameters depend on the policy
chosen while the first three do not. We are also concerned
with the parameter

U; = average shortage at ith CSF when reorder ar-
rives. (When there is no shortage, “0” is averaged
in.)

The average inventory cost can be expressed in terms
of the specified parameters as

C=%MTh+~Iq<:+h2_Wi (1

and this cost is incurred along with an average shortage
22U
i

Obviously, lower average shortage can be achieved by
maintaining higher stockage levels, thus resulting in
greater average cost, Eq. (1). The tradeoff between the two
must be made on the basis of an assessment of the impor-
tance of shortages (see Appendix A on the cost criticality
quantile). To help in making this assessment, one can use
the methods of Appendix A to examine the relationship
between average cost and expected shortage, ie., to see
how much reduction in expected shortage is “bought” by
successive increments of average cost. In this Section and
Section III, we are interested in developing a range of
policies, all of which are efficient in the sense that their
average cost cannot be improved without incurring greater
expected shortage. A mathematical device for characteriz-
ing such policies is to introduce a criticality parameter in
the form of a “cost™

p = cost per unit of shortage
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and consider the overall average cost per year as

1 K P

GMTh+ 3 +hEW:+ 3 U, @)
The efficient procedures, then, are those which minimize
Eq. (2) for some value of p > 0. By partial differentation
with respect to T, it is easily seen that

2(K+p3 U)T*
T= [—‘m‘—] @)

is necessary to minimize Eq. (2). The value of
U,

depends on the choice of minimum levels, which is con-
sidered in Section III. Since optimality in this choice
depends on T, a standard iterative procedure is useful for
determining both simultaneously (Ref. 2). For the ranges
of parameter values typical of the DSN, the first term in
the numerator in Eq. (3) dominates, so that

T = (-2%4’5,;)”2 (4

is a satisfactory approximation.

Given the value of T desired, we have the problem of
choosing the quantity to be ordered to achieve that value
of the expected time until reorder is necessary. Assume for
the time being that the following condition is imposed:
shipments arriving at NSD are immediately allocated and
shipped to the CSFs, with no inventory maintained at
NSD. (As discussed below, this approach is a reasonable
one for many low-cost items.)

B. Aliocation Problem for NR-Policies

Letti,¢,ti, - - - be the (random) waiting times between
successive demands at the ith CSF. The t'’s are assumed
independent and exponentially distributed with mean
1/x; depending on the CSF (estimated from demand
experience). It is assumed that each demand is for a single
item. (This simplifying assumption is relaxed for the con-
siderations of Section III, but to do so here would unnec-
essarily complicate the computations.) Given ny, * - - ,m
items allocated to the CSFs (in excess of their minimum
stockage levels), the expected time until one of the CSFs
reaches its minimum is

w k
Emin (£ + - - +ti)=[ Il Fae(ni~1)dt  (5)

0
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where F; denotes the Poisson distribution function with
mean At. It is not necessary to compute Eq. (5) for all pos-
sible k-tuples (n,, - - -, ni)—only for k-tuples which are effi-
cient in the sense that they maximize

Emin. (¢ + - + t)
among all k-tuples with the same initial inventory total,
ny+ -+ - + m. (By a Martingale systems theorem, this
efficiency criterion can be shown equivalent to minimiz-
ing the expected total surplus inventory, 3 W;.)
i

Let Q denote n; + - - - + m. A simple computer pro-
gram evaluates Eq. (5) numerically and optimizes the
choice of n,, - - -, ny recursively for Q =k k+1, - - - .
Given the optimal allocation for Q = 4, the optimal allo-
cation for Q =/ + 1 is obtained by computing Eq. (5) for
each allocation giving one more unit to some CSF than the
allocation for Q = {. There are k such allocations and the
one yielding the largest value in Eq. (5) is selected. Thus
one obtains an allocation table of the Table 1 type (easily
stored in computer memory).

The “Expected time” column denotes the quantity in
Eq. (5). The value of Q is chosen so that

Expected time = optimal T (mean time between orders)
(6)

as closely as possible. When a reorder is necessary (i.e., at
least one CSF is at its minimum) the NR-policy calls for
an order size

Order size = Q — 3 (residual at ith CSF) (7)

where the residual at a CSF is the inventory level at re-
order time minus the minimum inventory level (e.g., zero,
for the CSF that reaches minimum). The “Expected re-
sidual” column in the allocation table gives the average
value of the total of these residuals, i.e., the average value
of the quantity subtracted from Q in Eq. (7) to obtain the
order size. Equation (7) allows for each CSF to receive as
its share of the quantity ordered:

n; — residual at #th CSF (8)

where n; is the portion of Q specified in the table. In-
creased efficiency of allocation can be achieved by recom-
puting the allocation when the new shipment arrives, thus
taking into account the actual CSF inventory levels at
that time. Example: Suppose the residuals at the CSFs at
reorder time are 4,0,7,5,8,2, respectively, and T = 1.50 is
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desired. For Q = 117, Table 1 gives expected time 1.50
and allocates 16,17,19,20,22,23. Thus 117 — 26 = 91 items
are ordered and are to be allocated to the CSFs by Eq. (8)
as follows: 12,17,12,15,14,21.

If recomputation is made when the order arrives at
NSD, then the allocation can take into account the actual
inventory levels at that time. Suppose these current inven-
tory levels (with each CSF minimum subtracted) are
2, — 3,45,6,0, reflecting demands during lead period
2,3,3,0,2,2, respectively. Now the actual quantity availa-
ble for allocation is 91 + (2 —3 + 4 + 5 + 6) = 105, and
Table 1 indicates the allocation of 14,15,17,18,20,21. Sub-
tracting the current inventory levels (in excess of mini-
mum), we find that the 91 items are to be allocated
12,18,13,13,14,21, which differs slightly from the results in
the preceding paragraph.

C. Improved Allocation With R-Policies

We now consider some possible improvements in allo-
cating supplies to the CSFs when the no-reserve condition
is dropped and an NSD inventory can be utilized. These
improvements come about by reduction of the surplus
inventory term

hSW;

in the average cost equation, Eq. (2). However, any re-
supply incurs additional shipping and handling (but not
ordering) costs, including the cost of placing items in NSD
inventory and taking them out. These additional costs
must be assessed and weighed against the expected sav-
ings in the surplus inventory term.

For low-cost items stocked in small or moderate quan-
tities, it is clearly disadvantageous to handle an NSD
supply merely to effect a small savings in CSF surplus
inventory cost. For more expensive or higher-volume
items, the potential savings are worth analyzing and hence
a specific alternative to the no-reserve policy must be
formulated.

The simplest alternative, which would incur the least
increase in shipping and handling costs, is a one-stage
reserve policy (R-policy) which operates as follows. A
quantity R from each incoming order is placed in NSD
inventory, the remainder being allocated and shipped to
the CSFs. As soon as one CSF reaches its minimum stock-
age level, the entire reserve stock R is allocated and
shipped to the CSFs (some of them possibly receiving
zero). The next time one of the CSFs reaches minimum,
NSD must reorder.
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The time required to ship from NSD to the CSFs is on
the order of one-half the total of NSD lead period for
reorder plus shipping to CSFs. Hence, the expected short-
age during the waiting period for the R-supply is usually
negligible. The average surplus inventory W; is approxi-
mately equal to the average residual inventory at the ith
CSF plus the minimum level, minus the mean demand
during lead time. This occurs because in a typical lead
period there is no shortage. Consequently, the reduction in

resulting from an R-policy can be approximated by reduc-
tion in the total expected residual inventory (excess over
minimum levels) at reorder time.

Extensive investigations of R-policies were carried out
by Monte Carlo simulation on the XDS Sigma V computer
and the following rules were found to be most efficient:

(1) Choose Q and the order size as in the NR-policy
(i.e., Egs. 6 and 7).

(2) Choose R = 1/2 expected residual in the allocation
table, Table 1.

(3) After subtracting R from the total quantity availa-
ble for allocation, allocate the rest using Table 1 as
in the NR-policy.

One more procedure needs to be specified: how to allo-
cate the supply R among the CSFs. At the time the reserve
stock is to be shipped, NSD has R units, at least one CSF
has zero units in excess of its minimum level, and the
other CSFs have relatively small numbers of units. In this
situation the available total quantity, R plus the total
excess over CSF minimum levels, often cannot be allo-
cated according to Table 1. For example, if R = 17 and
the CSF levels (over minimum) are 3,7,1,4,0,8, respec-
tively, then the total quantity available is 40, and Table 1
calls for the CSFs to have 6,6,6,7,7,8 (over minimum),
respectively.

But complex number 2 already has more than-called
for, and since (we are assuming) CSFs do not ship sup-
plies to other CSFs, an alternative allocation must be
made. The optimum alternative allocation subject to the
constraint that every CSF is allocated no less than its
current level can be calculated by an algorithm similar to
the one used for the allocation table.

However, almost exactly the same results can be

achieved much more simply by a modified use of the allo-
cation table. The current quantities on hand at the CSF's
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are entered in the table in place of all smaller entries.
Thus none of the allocations specify fewer units for a CSF
than it already has. The ailocation to be used is the one in
the table for which the total of the CSF allocations agrees
with the number of units actually available.

In the example above, row 40 in Table 1 would be
changed to 6,7,6,7,7,8, for a total of 41. Row 39 in
Table 1 (not shown) would be changed from 5,6,6,7,7,8 to
5,7,6,7,7,8. The latter allocation adds up to 40 and hence
would be the one used.

D. Example of Comparison Between NR-Policy
and R-Policy

Suppose the row of Table 1 with Q = 142 is used for
the NR-policy. Then, according to the table, the expected
residual at reorder time is 34.8. Using the R-policy with
R =17, the expected residual averages 19.9. The net
reduction of 14.9 is 10.5% of the initial quantity, 142, and
the average inventory cost, Eq. (1), is reduced by the same
percentage.

Il. CSF Minimum Stockage Policies
A. General

The problem of setting minimum levels for a CSF inven-
tory consists of minimizing the part of the average cost

equation (Eq. 2) that involves the minimum levels. That
part is

+P sy = 1Py
REW, + L SU, E(hW,ﬂLTU@) )

where h, p, and T are known (see Section II) and

W; = average inventory level at ith CSF when reorder
arrives

U; = average shortage (unfilled demands) at ith CSF
when reorder arrives.

The sum over i in Eq. (9) is minimized by choosing sep-
arately for each CSF the minimum stockage level that
minimizes

B(s+1)—B(s)=h+(%+h){

y=8+1

Y=8+1

= (3+h)P(Yés) -z
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w+E2u

7 (10)

The subscripts in Eq. (10) are dropped since we will con-
sider from now on a fixed CSF.

To find the optimum value of
§ = minimum stockage level

it is necessary to express W and U in terms of the random
variable

Y = total demand (in number of items) at the CSF
during one lead period.

The number of units on hand at the CSF at the beginning
of a lead period may be greater than s (if another CSF
reached minimum first) and may be less than s (if an order
for more than one unit reduces the inventory level below
minimum). To obtain approximate expressions for W and
U it will be assumed that the inventory level at the begin-
ning of a lead period equals s. Then

W=E(s—Y)
and
U=E({X —s)*

where E denotes the expected value or average and “*+”
means “positive values of,” the negative values being aver-
aged in as zero. (If, for example, Y — s is negative, then
there is no shortage and zero is averaged into the deter-
mination of U.) Therefore, the problem is to minimize

hE (s — Y)* + %E Y — s)* (11)
which equals
hE(s—Y)+<%+h>E(Y—s)+ (12)

In order to obtain a preliminary result, it will be as-
sumed for the moment that the probability distribution of
Y is known. To find the minimizing s in this case, let B (s)
denote the expression to be minimized (Eq. 12) and note
that

5 <y—<s+1)>-P(Y=y>—§?<y~s>P<Y=y>}

<’% + h) (~§P(Y = y)>
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Since P (Y =< 5) increases with s, so does B (s + 1) — B(s),
and the minimizing s is obviously the smallest s such that
B(s + 1) — B(s) is positive, or, what is equivalent,

P(Y=5s) >

(13)
b
Tt h

Thus the value of s minimizing B (s) is the smallest s satis-
fying Eq. (13). Letting

q hT (14)

P

T 1

+h 14—
p

P
T

the minimizing s is the gth quantile of the distribution
of Y, the demand during lead time. This q is called the
cost-criticality quantile.

The situation in the DSN is that the demand distribu-
tion for a CSF is unknown. However, its gth quantile can
be estimated from observed demand over a time period ¢
(measured in units of one lead period). We proceed, next,
to describe a method for estimating this cost criticality
quantile and thus the minimum level from observed data.

B. Estimation of the Cost Criticality Quantile g

We assume that demand is stationary over time and
hence describable by a compound Poisson process. That
is, orders of size k(k=1,2, - - - ) arrive independently
of each other with mean frequency A, per unit time and
with probabilities

t m
P (m orders of size k during time t) = exp (— M) ():;Ll)

(15)

fort>0m=0,1, - - -

Let X; = the number of orders of size k observed dur-
ing time ¢ > 0. Then from Eq. (15) we have

(Mt)®
X

P (Xy = x) = exp (— M) !

,forx=0,1,2, - - - .

Let X=(X,X,, - )and A =(Ay, As, * * * ). Assume
the minimum stockage level s is to be chosen as a function
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of X. Then the resulting average cost is
C(\) =RE, (s(X) = Y) + (% + h) E, (Y — s(X)\

where the symbol E, is used to indicate that the ex-
pected values depend upon the true values of the \y's
(e.g., for large Ays, both X and Y will be large with high
probability).

It is desired to minimize C (X). But it is easily seen that
no rule for choosing s can minimize C (X) for all A simul-
taneously. (For different As, the distribution of X is differ-
ent, and its gth quantile differs.) We can only choose s (X)
to be a good estimate of the gth quantile of the (unknown)
distribution of Y, based on the observed X over time ¢. For
each X\, define

R(\) =

C (\) — min hE {(s -Y) + (% + h> E,(Y — S)*}

§=0

the regret (in the form of extra average cost) resulting
from use of the estimate s (X) rather than the (unknown)
best possible s for N. A reasonable goal may be roughly
defined as follows: for a broad range of As, keep the regret
small. This estimation problem, with the regret function
(of XY given above, is an example of a statistical decision
problem, in the sense of Wald. The general theory of such
problems (Ref. 3) leads to the conclusion that essentially
all worthwhile estimation rules are solutions for some

_probability density, g (A), of the following problem:

Choose s (X) so as to minimize / R\ g(N)dn

In other words, the worthwhile estimation rules are those
which minimize some average of the values of the regret
function (the averaging being done according to a pre-
scribed g). Such a minimizing rule is called a Bayes solu-
tion with respect to the density g, which is called an
a priori density. The Bayes solutions of the present prob-
lem can be found for a large class of g’s and the choice of
an estimation rule among these solutions is easy to ana-
lyze. To do this, it is helpful to consider first the special
case where all orders are of size one, so that X and A are
one-dimensional: X and A. We have

x«x=012 ---
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and

¥

Py =y) =ty

y’) y:())l’z,..'

where Y, as above, is the demand during a lead period.

Suppose g is of the form

A)n
(x'(;(*)n)e‘m forA>0

g() = (16)
0 forn=0

the so-called Gamma density with « > 0 and n > 0. The
general theory of Bayes solutions (Ref. 3) characterizes
the Bayes solution for a given a priori density g as follows:
if X = x is observed, then the optimal choice s (x) is that
value of s which minimizes

/Ow{hEA(s—Y) + <% +h)E%(Y_S)+}g,(A)d)\:
hﬁwEx (s = Y) g, (A)dxr
+(%+40/fE“Y“”Vg“”d* (17)

the so-called a posteriori risk, where

(e"“ (At)’”) N (@)t W

x! T (n)
® [ oAt (At)a: (a)\>n—1 S
| ()5 e
which is called the a posteriori density of A given x. A
routine computation reveals that g, (1) is a Gamma den-

sity with parameters « + ¢ and n + x. Thus, the first inte-
gral in Eq. (17} can be written

2 (A)

/w <Z (S —_ y) e-)\ 5) (a + t) % e"\("‘*t)d)\ = E ;‘_(If_(;__!i/__)a-/we—z\(mtn) (a + t)n+z)\n+¢+y—1d)\ _—

y=0 y=0

o0

. n+x+y—1) 1 v/ a+t ™
2:“ ) y l+at+t) \T+att

y=0

This is the expectation of s —Y when Y has distribution

o _{ntxt+y—1 1 v at+t \™ _
P(Y_y)—< Y )(l+a+t> (1+a+t> > =01 (18)

which is the negative binomial distribution with parameters n + x, (1 + a + £)~*. Similarly, the second integral in Eq. (17)
is the expectation of (Y — s)* for the same distribution of ¥, which we call the a posteriori distribution of Y. Just as in
Eq. (12), therefore, the minimizing s is the gth quantile of the distribution, i.e., the Bayes solution uses for s (x) the

smallest s so that

8

}: n+x+y——1) 1
Y l1+a+t

y=0

In the general case where orders are of multiple sizes,
the Bayes solutions are readily obtained for a priori den-
sities on A which are products of individual Gamma densi-
tieson Ay, Az, - 0 0, Ay (@SSUMIDG Ay = Ay =+ -+ =0),
These a priori densities result in an a posteriori distribu-

138

P
”( e+t "*”> T
l1+a+t q—p

tion of ¥ which can be obtained as the distribution of
the sum

Y +2Y,+ - - +mY,

where Y,, -+, Y,, are independent (representing the num-
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ber of orders of sizes 1, -+, m) and each Y (k =1, -+, m)
has negative binomial distribution with parameters n; +x,
(1 + « + )7, (m, « being the parameters of the a priori
Gamma density of Ay). The distribution of Y can therefore
be calculated by applying the following recursion formula
fork=1, - - - ,m — 1 successively:

PY,+2Y,+ -+ +(k+ DY =y)=

[y/ (k+1)]
PYpa=H)PY:+ - +kYi=y— (k+1)j)

ji=0

where [y/(k + 1)] denotes the largest integer = y/(k + 1).
The probabilities P (Y., = ) come from the negative bi-
nomial distribution, Eq. (18), with parameters

Moy + Xpws, (I+a+18)?

As before, the Bayes solution chooses s as the qth quan-
tile of the a posteriori distribution of Y.

This a posteriori distribution of Y can be expressed in
another way which is useful for computation and for intui-
tive appreciation of how the choice of the parameters of
the a priori distribution affects the determination of s. It is
helpful to start with the case where all the ny’s are posi-
tive integers. Consider three consecutive time periods of
lengths «,t,1 (measured in units of one lead period, as
above). Reasoning that any order of size k arriving dur-
ing the total period of length « + ¢ + 1 has probability
1/(a + ¢ + 1) of arriving during the period of length one,
we have a game of “heads and tails™ where each order of
size k (k fixed) is scored as “heads” if it lands in the time
period of length one, and “tails” if it Jands in the preced-
ing time period of length « + ¢, Our situation is this. For
orders of size k, suppose we observe n; during the time
period e, then x; during time period ¢, We then have a
total of ny + x; tails, but we do not know the number of
heads (orders of size k during time period 1). However,
since Prob. (heads) = 1/(a + t + 1), the probability of
getting m heads before n;, + x; tails can be calculated for
m=20,1,2, - - - and leads to the negative binomial dis-
tribution with parameters ny + xx, (1 + a -+ #)-*. This is
precisely the distribution we found above for Y}, the num-
ber of orders of size k in the construction of the a pos-
teriori distribution of Y! Moreover, this interpretation of
the negative binomial distribution for Y, makes clear the
fact that Y; can be constructed as the sum of ny + xx
independent and identically distributed variables: the
number of heads before the first tail, the number between
the first and second tails, - - - | the number between the
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(ng + x;, — 1)-th and (n; + x)-th. Each of these has the
geometric distribution

N 1 i a+t ,
P(7)_<1+a+t) <l+¢x+t>’ =012

We have thus obtained a heuristic interpretation of the
distribution of the Y,’s (and, through them, an interpreta-
tion of the a posteriori distribution of Y). One specifies
n; orders of size k as occurring during an “a priori time
period” of length «, one observes xx orders of size k during
a time period of length ¢, and from each of these n; + %
orders of size k, one infers a geometrically distributed
number of orders of size k during the lead period (on
length one). (The mean of this geometric distribution is
(a + )7, incidentally, so that the expected value of Y is
(ng + xx)/(a + t), which is the average number of orders
of size k per unit time during the combined « and ¢ time
periods).

The point of the heuristic discussion above is not to
justify the Bayes solutions, whose minimization of average
regret is justification enough. Apart from making the
modus operandi of the Bayes solution appear plausible,
the discussion is important in that it yields two important
results:

(1) The effect of « and the ny’s is as though one observed
n; orders of size k during an “a priori time period”
of length «. Since the ni’s need only be positive, not
necessarily integers, this interpretation applies in
the general case “by interpolation.”

(2) The effect of @ and the ngs diminishes to zero as
observations are continued over a time period
t— o. (For example, the expected value of Y,
(nx + xx)/(a + 1), is asymptotic to x/t.)

A practical difficulty in working with the Bayes solu-
tions obtained above is that one must specify not only «,
but also the values of ny, i.e., the number of orders of each
size k during the “a priori time period” «. How large
should k be allowed to be in this specification? If there
are many possible values of k, then what recipes can be
used to prescribe the ny’s? These are difficult questions,
which suggest that a considerable practical advantage can
be realized by approximating the Bayes procedures for
setting s by a family of procedures involving a small, fixed
number of parameters. To this end, it is sufficient to find a
good approximation to the a priori distribution of Y, which
comes from convolutions of negative binomial distribu-
tions. Approximate Bayes solutions are then obtainable by
“updating” the a posteriori distribution of Y each time an
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actual order occurs during the time period ¢ (in the man-
ner described above). Investigation of a variety of cases
indicated that satisfactory approximations were obtain-
able by replacing the specified a priori distribution of ¥
by a gamma distribution having the same mean and vari-
ance. (Actually, since the gamma distribution is contin-
uous, one “discretizes” it by taking the probabilities of
unit-length intervals). This was checked out by comparing
the regret functions of the approximate Bayes solutions
with those of the corresponding Bayes solutions.

We have now a class of (approximate Bayes) procedures
for setting s for a CSF. Each member of this class has
four parameters associated with it:

g = the quantile of the a posteriori distribution of Y
that is chosen for s, the cost-criticality quantile

a = the length of the “a priori time period”
G = mean demand specified for a priori period

o? = variance of demand specified for a priori period

It is convenient to use the parameters G, = o*/G rather
than ¢2. The question that remains is how to choose the
four parameters q, «, G, G, for individual items and CSFs.
The relation of Eq. (14) showed that

1

q:—————
14 T
P

(19)

is the optimal choice.

After setting the cost parameters and determining T
approximately by Eq. (4), the choice of g by Eq. (19) is
determined by the choice of p. The standard approach to
inventory models (Ref. 2) regards p as a “penalty cost,”
not actually paid, but equivalent in dollars to the negative
consequences of each unfilled demand. For some items it
may not be difficult to estimate such a figure. For others,
another approach may be easier, namely, to choose q itself
directly. The latter can be accomplished by computing,
for a range of specified g-values, both the expected
shortage and the inventory level or, equivalently, the
expected inventory cost. Thus the tradeoff between the
two can be judged directly. An illustration of this ap-
proach is given in Appendix A.

With either of the methods for determining g, there is
the possibility of failing to choose the truly optimal q.
Both methods involve T, the mean length of the order
cycle, whose determination is based in part on estimates
of CSF mean demand rates. The error of these estimates
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is therefore reflected in the choice of g. The effect of this
error on the regret was studied and typical results are dis-
cussed in Appendix B. It was found that the increased
regret from this source should be relatively small. In fact,
even a mis-estimate by a factor of 2 does not cause very
large additional regret. By the same token, the tradeoff
between expected shortage and inventory cost does not
have to be determined precisely in order to achieve near-
optimum results.

C. Evaluation of Procedures for Determining s

The choices of «, G, and G, are potentially quite vari-
able. The terms G and G, can be regarded as postulated
values (perhaps “engineering estimates”) of the mean
demand per lead time and variance/mean ratio. (If the
demand is compound Poisson, then G, is the average size
of the order to which a randomly selected unit belongs.)
The parameter « measures how much weight is placed
upon these postulated values, In other words, a large value
of a tends to reduce the regret in those instances where
the true mean demand and variance/mean ratio are close
to G and G,, respectively, but increases the regret if the
true values are substantially different.

To investigate the consequences of various choices of
the parameters o, G, and G,, a computer program was
developed to compute to within any specified accuracy
a representative set of values of the regret function for a
given set of parameter values and given t. Extensive in-
vestigations were made in the cases t = 2, 4, and 6 because
this range (in the unit of time equal to one lead period)
is likely to be observed for current DSN items before their
first reorder is necessary. The regret function computa-
tions (which also yielded computations of expected short-
ages and average inventory levels) were carried out for
(true) mean demands ranging from 0.5 items per lead
period (per CSF) to 30.5 items per lead period. This
demand was constituted of orders of sizes 1 and 5 or 1, 3,
and 10, with varying frequencies of order size to the
overall demand. Thus cases like “infrequent order sizes
greater than one,” “frequent large order sizes,” “mainly
moderate order sizes” were investigated systematically,
with g taking the values 0.853, 0.90, 0.95, 0.97, 0.99.

The following guidelines were developed from these
investigations:

(1) If mean demand can be estimated with high con-
fidence of no more than a factor of 3 error (in either
direction), then the range o« = 0.4 to 0.6 is most
effective in minimizing regret.
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(2) The value of G should be chosen 25-50% higher than
the estimated mean demand.

(3) The value of G, should be chosen 40-80% higher
than the estimated variance/mean ratio for demand
during lead time.

These seemingly conservative choices of G and G, are
preferable because of the nature of the regret functions
for the procedures under consideration. The choice of G
results from the fact that it is relatively difficult to mini-
mize regret for higher demand rates. The choice of G, on
the high side also helps keep the regret small for higher
demand rates and, in addition, is particularly useful in
protecting against sporadic demand for larger than normal
order sizes. Where this sporadic demand is considered a
greater possibility, still larger values of G, are called for.

Besides developing the guidelines for choosing specific
procedures for setting CSF minimum levels, the computa-
tional investigation was aimed at evaluating the perform-
ance of this type of procedure. Specifically, it was desired
to see whether the regret was fairly uniformly controlled
for large ranges of demand distribution parameters. It
became readily apparent that the regret tended to rise
directly with the demand level. In other words, the regret
tends to be a fairly constant percentage of the minimum
possible overall cost (Eq. 2). (Recall that this minimum
possible overall cost is attainable only if the true demand
distribution is known.) In Fig. 2, the percentage regret is
plotted as a function of mean demand during lead time.
A separate curve is plotted for each of four cases (labeled
“Frequency of Order Sizes”). It is assumed that orders
are of two sizes, one unit and five units, and the cases
specify the frequency of each order size.

Note that the percentage regret in all four cases is about
15% for mean demand in the range 8.5 to 30.5, and is some-
what larger, about 20-25%, for smaller demand levels. (Of

course, the regret in absolute terms is still substantially
smaller for low demand than for higher demand.) This
mild increase in percentage of regret at the extreme lower
end of the demand range is typical, and results largely
from the conservative effect of the a priori estimates G
and G,, which causes the minimum levels to provide
reasonable protection against shortages even if the ob-
served demand is quite small. Figure 3 shows the results
of a more elaborate investigation of the performance of
the same procedure (« = 0.4, G =15, G, =7, g = 0.90).

The eight cases shown in Fig. 3 represent variations of
the frequency of order sizes for orders of sizes 1, 3, and 10.

Note that the regret is in the 15-20% range, approxi-
mately the same as in Fig. 2. Both figures give the results
for t = 4 lead periods, which is on the order of one year’s
experience with observed demand. The range of 15-20%
regret is the best that can be accomplished by any of the
procedures studied uniformly over a broad range of pos-
sible mean demand levels and variations in frequency of
order sizes. It is appropriate to consider this regret as the
(essentially unavoidable) cost of the degree of uncertainty
regarding the true demand distribution that remains after
one year’s observation. Of course, considerable improve-
ment in reducing overall costs is possible in the long term
if the system is implemented in a consistent fashion and
the demand distributions are fairly stable. As an illustra-
tion of the improved percentage of regret typical after
1% year’s observation (¢ = 6), we have Fig. 4.

Here the pattern is similar to Fig. 2, but the regret is
mainly in the 10-15% range rather than in the 15-20%
range. The computations of regret become more time-
consuming for large t (the time increasing with ¢2), but
routine mathematical arguments show that, as would be
expected, the percentage regret over any fixed demand
range approaches zero uniformly as ¢ approaches infinity.
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Table 1. Excerpts from a typical allocation table

CSF annual demand rates

0 k=6 7:8:9:10:11:12
moomo om o omeons ong Pipected  Expocted

6 1 1 1 1 1 1 018 5.00
7 01 1 1 1 1 2 021 5.79
8 1 1 1 1 2 2 026 6.53
9 1 1 1 2 2 2 032 7.18
0 1 1 2 2 2 @2 040 771
40 6 6 6 7 71 8 396 17.41
105 14 15 17 18 20 21 132 29.54
17 16 17 19 20 22 23 150 31.35
142 19 21 23 25 26 28 188 34,82
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Fig. 2. Regret as a percentage of average cost for a range of
demand distributions (t =4, « = 0.4, G=15, G1 =7, ¢ = 0.90)~—

order sizes 1, 5
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order sizes 1, 3, 10
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Fig. 4. Regret as a percentage of average cost for a range of
demand distributions (t =6, « = 0.6, G =10, G1 = 7, ¢ = 0.90)—
order sizes 1, 5
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Appendix A
Tradeoff of Expected Shortage vs Inventory Level

Each curve in Fig. A-1 corresponds to a different
(true) mean demand level. The five points distinguished
on each curve correspond (moving from left to right) to
q = 0.85,0.90,0.95,0.97, and 0.99. Intermediate points can
be attained by choosing intermediate values of q. Moving
along a fixed curve from left to right, the expected short-
age decreases (as q is increasing) while the average value
of s, the minimum stockage level, increases. Increments of
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small s when multiplied by h give a good approximation
to increments in average inventory cost per year. Thus
the curves indicate how much decrease in expected
shortage is “bought” for arbitrary levels of increased
inventory levels. The “flattening out” of the curves shows
that in the range of 0.97 to 0.99 a relatively small rate of
decrease in expected shortage is obtained by increasing
the inventory level.
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Fig. A-1. Expected shortage vs inventory level and demand
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Appendix B
Effect of Mis-estimating q

Figure B-1 shows the overall average cost (Eq. 2) as a
function of the mean demand per lead period. The order
sizes are 1, 3, and 10, with fixed frequency of order sizes.
The bottom curve plots the minimum possible cost (attain-
able only if the demand distribution is known). The
second curve from the bottom shows the average cost
incurred when the correct choice ¢ = 0.95 is made. (Thus
the distance between the two curves is the regret.) The
two upper curves represent the average cost incurred
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when an erroneous q is used (e.g., through mis-estimating
T or setting p poorly).

The value g = 0.97 corresponds to an underestimate
of T by a factor of 3/5, while the value of g = 0.90 cor-
responds to an overestimate by a factor of 2. Even these
levels of error produce an increment to average cost sub-
stantially smaller than the regret.
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Fig. B-1. Effect of mis-estimating q
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